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Introduction

The winter of 2009-2010 was characterized as the
strongest “Central-Pacific (CP) El Nino” in the past three
decades (Lee and McPhaden, 2010).

The atmospheric response to this El Nino was captured by
a suite of A-Train satellite instruments.

The clouds and water vapor changes during this El Nifo
are examined with the new satellite observations.
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Questions to Answer

What are the vertical profiles of clouds and water vapor
response to El Niho?

Are the changes in clouds and water vapor driven by

dynamic circulation change or thermodynamic changes (SST,
SST pattern, or other factors)?

How do atmospheric responses to “Central-Pacific (CP) El
Nino” differ from those to “Eastern-Pacific (EP) El Nino”?

Is El Nifo a test bed for global warming?



Data Used

CloudSat/CALIPSO

The Level 2 cloud water content (CWC) profiles (2B-CWC-RO) from CloudSat and
cloud fraction from combined radar and lidar measurements (2B-GEOPROF-LIDAR)
are used. Data are available since June 2006.

Aura MLS

The Level 2 upper tropospheric (UT) ice water content (IWC) and water vapor
profiles (V2.2) are used. Data are available since August 2004.

Aqua AIRS

The Level 3 water vapor profiles (V5) are used. Data are available since September
2002.

NCEP/NCAR Re-analysis
Monthly mean optimum interpolated SST (December 1981 to September 2010,
19 x12) and vertical velocity at 500 hPa are used.
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Figure 1. The anomalous SST in DJF 2009-10 (top)
and DJF 2006-07 (bottom). The anomaly is relative
to the 30-year long term mean. The warm SST
anomalies in DJF 2009-10 were concentrated in the
CP, while the SST anomalies in DJF 2006-07 were
more concentrated in the eastern equatorial Pacific
(EP).
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Figure 2. Three-month smoothed (a)
Nifo4 and (b) NifoJ3 indices, describing
SST anomalies in the CP and EP,
respectively (adapted from Lee and
McPhaden, 2010). The 2009-10 winter
experienced the strongest CP El Niio.




e Integrated View From A-Train

A-Train Satellite Observations of 2010 El Nino (02/2010)
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Averaged (595-52N) anomalies for DJF 2009-10

» Enhanced convection in the CP produces
increased CWC and water vapor into the
TTL. Over the deep convection, the tropical
tropopause layer (TTL) is dehydrated.

 Reduced convection in the western Pacific
(WP), accompanied by reduction in CWC
and water vapor in the troposphere. The
TTL is hydrated.

* Response to the EI Nifilo SST warming is
observed over the globe.
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® Besides deep convective
cloud changes, CloudSat
CWC shows reduction of
low clouds in the northeast
Pacific, and increase in the
low clouds in the southeast
Pacific.

* A horse-shoe pattern is
observed in the boundary
layer water vapor anomaly
field.



Temporal Evolution
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* The 2009-10 El Nifo marks the strongest UT cloud and water vapor
anomalies since the beginning of Aura mission.



Analysis framework by Bony et al. [2004]

C: a cloud variable (such as L/IWC, cloud
fraction, cloud radiative flux or cloud
radiative forcing)

Q). a proxy of large-scale circulation

P . Probability of a dynamical regime with
the value of

C_: cloudiness in a dynamical regime with
the value of ®

C : tropical-averaged cloudiness expressed
as +00

oc changes of tropical-averaged cloudiness
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(1): dynamic component: changes of circulation
regimes

(2): thermodynamic component: changes of
cloudiness in a given dynamic regime

(3): co-variation of (1) and (2)

Height (km)
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Decompose the Dynamic and Thermodyh;r“ﬁﬁif: Cloud Changes
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%hanges in Large-scale Circulation
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Dynamic Cloud Changes

CloudSat Cloud Water Content CloudSat/CALIPSO Cloud Fraction
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* Increased high clouds in strong upwelling regime
» Decreased high and low clouds in moderate circulation regime
* Increased low clouds in relatively strong downwelling regime



Thermodynamic Cloud Changes

CloudSat Cloud Water Content CloudSat/CALIPSO Cloud Fraction
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* Increased high clouds in strong upwelling regime

» Decreased high clouds but increased low clouds in moderate circulation regime
* Increased low clouds and cirrus in relatively strong downwelling regime
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Co-variations

CloudSat Cloud Water Content CloudSat/CALIPSO Cloud Fraction
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* Positive in most circulation regimes, except for low clouds in the moderate
circulation regimes



Total Cloud Changes
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* Increased high clouds in strong upwelling regime

» Decreased high and low clouds in moderate circulation regime

* Increased low clouds and cirrus in relatively strong downwelling regime

 The total cloud change is dominated by dynamic component driven by
circulation change



Comparing Two El Ninos
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Conclusions

A-Train measurements clearly show the eastward shift of deep convection
from the climatological WP to CP during the 2009-10 El Nino.

The positive anomalies of tropical-mean water vapor and cloud ice in the UT
were strongest since Aura launch.

The 2010 El Nifo contributed to an increase in the tropical-mean stratospheric
water vapor.

The change in circulation (dynamics) dominates the tropical cloud changes,
while the circulation change is a result of SST change.

The co-variation of dynamic and thermodynamic components is non-negligible.



